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Soliton solution for Davydov soliton in a-Helix by (G'/G)-expansion technique
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Abstract: In this paper we consider the Davydov soliton in a-Helix proteins having under anti-

cubic law of non-linearity and we will solve this non-linear Schrodinger (NLSE) equation with the

help of ( G'/G )-expansion technique. As special case parabolic law nonlinearity falls out.
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1. Introduction

of science, the non-linear
(NLSE)
significance and studied in different areas of

In various areas

Schrodinger  equation has  great
science and numerical solved (Basat & Asghar,
2023). Solitons arise in many areas such as
hydrodynamics, solid state physics, biological
physics, fiber optic communication, atomic physics
and many others (Arnous et al., 2015; Bouzida et
al., 2017; Cheemaa et al., 2016; Islam et al., 2017;
Liu & Tian, 2012; Mirzazadeh et al., 2015; Rizvi et
al., 2016; Tian, 2016, 2017; Younas et al., 2018b;
Younis et al., 2016; Younis & Rizvi, 2015) Soliton
can propagate over a long distance without
altering its shape and attenuation of the amplitude
and have balance self-phase modulation through
the Group Velocity Dispersion (GVD) (Serge et

al., 2017) non-linearity have different forms.

In this article, we focus on the general form of
nonlinear media, the under anti-cubic law of non-

linearity. Therefore, here in this paper we consider
the general form of nonlinearity, which is the
under anti-cubic law of nonlinearity.

In this paper we will focus on integrability. There
are many forms of integration architectures
available in literature. In recent several new
methods are developed for finding the soliton
solution. Jacobi elliptic function method (Feng et
al.,, 2017), exp-function method (Xu et al., 2016),
the modified simple equation method (Feng et al,,
2017; Inc & ATES, 2015; Ing et al., 2016; Kilic &
Inc, 2015; Tu et al.,, 2016), tanh-sech method (Inc
et al.,, 2016; Kilic & Inc, 2016; Kilic et al.,, 2016),
extended tanh- method (Tchier et al.,, 2016, 2017)
and so on. In this article we will address another
power full and important tool for integration, that
is (G'/G)-expansion scheme (Al Qurashi, Ates, et
al., 2017; Al Qurashi, Yusuf, et al., 2017; Aslan &
Inc, 2017; Aslan, Ing, et al., 2017; Aslan, Tchier, et
al.,, 2017; Inc, Aliyu, & Yusuf, 2017; Inc, Aliyu,
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Yusuf, et al.,, 2017; Inc et al., 2016; Kilic & Inc,
2017; Lii et al,, 2016; Lii & Lin, 2016; Lii et al,,
2018; Tchier et al., 2016).

We will also study the dynamics of soliton in a-
Helix proteins. Dynamics of soliton in o-Helix
proteins is very important and studied from last
tew decades (Bouzida et al., 2017; Mirzazadeh et
al., 2017; Younas et al, 2018a). From last few
decades it gets a lot of progress. In this article we
will study the nonlinear Schr odinger equation
(NLSE) which is referred to as the Davydov
module.

2. Analysis for the (G'=G)-expansion method

Here we will discuss the ( G'/G )-expansion
scheme and then apply on nonlinear Schrodinger
equation (NLSE) with under anti-cubic law of
nonlinearity. Suppose the form of nonlinear
Schrodinger equation (NLSE) s,
K(ur Uy Uyy Unyes Utts uxt) =0

(2.1)

where K represents a polynomial. The ( G'/G )-
expansion method is given in the following steps:

Step-1:

By using traveling wandering revolution, we
suppose that,

(x,t)=P(Q){=x—ct (2.2)
Using Eq.(2.2) in Eq.(2.1) we get,
L(P,P',P",P" ...)=0 (2.8)

Step-2:

Let suppose that the wandering wave solution of
Eq.(8) is in the form of finite series:

P($) = Loy aq (22

2.4
G (24)

Where @, are constant with a, # 0 and n is

positive integer. The function G ({) is the solution
of the auxiliary linear ODE.
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hare 8 and y are both real constants.
Step-3:

By balancing the linear term having highest
derivative in Eq.(2.3) with the highest order
nonlinear term we can find value of n.

Step-4:

Using the general solution of 2nd order ODE
given in Eq.(2.5) along Eq.(2.4) in Eq. (2.3). We
get an algebraic equation with powers of (G'/G),
by setting the coefficients of (G'/G)™ for

n =0,1,2,3, ... to zero. This gives us a system of
equations having aq,ﬁ, y, and ¢. Then find the
values of ag,f,y and ¢ from the system of
equation. Solution depends on the sign of the
discriminant A = B2 — 4y. We obtain the solution
of Eq.(2.3)
obtain the exact solutions of equation (2.1).

and can therefore

3. Mathematical Analysis
The governing equation that will be studied for

the soliton in a - helix protein is given by.

W+ W + (PP +QP™HW =0 (3.)

In Eq.(8.1), W(x, t) denote the wave profile and the
independent variable x is spatial and t is temporal
variable and m is perimeter of dual power law
nonlinearity. We introduce the traveling wave

transformation as,
[p(x’ t) — p(()ei[—Kx+(ut+9] (32)

Where = x + kt .

We have

W, (x,t) = [-wp({) + ikp'({)]ell-rx+wt+6]



Wy (x,8) = [_KZP(Z) - ZiKpl(()
+ pn(()]ei[—xx+wt+9]

lljllplzm — p2m+1(()ei[—xx+wt+9]
q;le|4m — p4m+1(()ei[—xx+a)t+9]
Using Eq.(2.3-2.5) in Eq.(3.1) we get

p" () — Qw +k*)p(Q) + 2p*™ () +

20p*™1(0) = 0 (3.9)

Balancing p"’ ({) with p*™*1({) we get n+2 =
(4dm+1)n So, n= ﬁ Now let suppose that
solution of above Eq. (3.3) is of the form:

1
G'(¢ ))m
p($) = M<
©="50
Where M is constant and G({) satisfies Eq.(2.5)
hence we get the following equation.

ES
Mb (Ge)" -

—+1

P =——M @gﬁl—i

2m
1

el
it (G5)
@ = (G G+ G

1

) ms (S0 ¢
L

( m2 14 4m?2 ﬂz) M ((;(_((()))zm + (# -
2

2;2) MBy (ifg)zm 1 + (4;2 N

L2
)M (55) "

Now using previous Equations in Eq.(8.5) and

(8.5)

collecting terms which have the same power of
¢'(Q

(G(O) and equal to 0 . So, we get a set of

algebraic equation for 5,y, M, w.
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1
(G0)" ey M =gy = (3)
11
¢\t 1 1 _
(G(o) 2m? vh ZmﬁyM - (8.7)
Lo ——t2
(ZE)™ g M + 5 M+ 20M*™1 = 0(s.5)
1
'@y 1 2ma1 _
(£2) — M + 2M?™ =0
(8.9)
L
(G’(z))zm
G
— VM +— M — Qo + k)M =0 (3.10)
Solving the algebraic equation we get.
1
_ _(1+2m) am
M = ( py— ) (8.11)
_ _ [zrraeem
b= [ (5.2
= (K __axzm)
w = (2 4Q(1+2m)2) (3.13)

From Eq.(2.5), Eq(8.2), Eq.(8.7) and Eq.(3.13-
3.16), we get exact traveling wave solution of the
equation(NLSE) with
under anti-cubic law of nonlinearity as:

nonlinear schrodingers

—2m?2 2
Lp(x t) __a+am) cze‘/ 2m?(1+2m)/Q(1+m?) y
’ 20(1+m)? J—2m2(1+2m)/n(1+m2)
c1tcre

ei[—kx+(—k2/2+(1+2m)/4Q(1+m)2)t+6]

(8.14)

In Eq.(8.14) if m =1 we get the below exact
traveling wave solution:

3 ¢ eV-6/20(x—kt)
P(x,t)=|———2 X
8Q ¢, +cyeV/—6/200x—k)

ei[kx—( s )evo)

(8.15)



4 Application of improved (G'/G)-expansion
method

Now we are interesting to obtain closed from
solution, So by using below transformation:

1
p(§) = x>m($) (4-1)
using eq.(4.1) in eq.(3.5) we get the following ODE

2my(Ox" () + A —2m)x"*(9) -

4m? Q2w + k*)x*(Q) +8m*x* () +
8m2Qx*({) (4-2)
’ q
=% a(58) @)

Here a4 real constants with a;,, m is a positive
integer. By balancing the linear term having
highest derivative in Eq.(4.2) with the highest

order nonlinear term we find value of m, and

G’ (())

G
trom Eq.(4.4) we have
Gl 2 GI
x(Q) =—a <G((§))> —af (G((C())> — a1y

G O\’ G O\
2a1<G((§))> +3a1ﬁ<6((§))> + a fu

+ B+ 2a.u (il((g))

2o (()) <G'(C)> 5
x () = al(G(Z) + 20904 _G(Z) + ag
N (()) <G (5))
X (@) =a <G(z> 30 G0

2 (Z)) 3
+ 3a5a <G({) + ag

X =a,+a (4.4)

X" =

>a1ﬁﬂ
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¢'O\* ¢ O\
‘“1‘(0((5?) +4“°“13<G((§))>
(9]
+6aa (G(€)>
(9] 4
+ 4ada, (—G(O> + a;

Substituting above set of Equations into Eq. (4.2),
and collect all terms which have the same powers

of (G'/G) and coefficient of (G'/G),i = 0,1,2,3,4

to 0 , we get an algebraic system of
equations:
N
G'(DY .
(G(Z)) )
dma? + (1 - 2m)a? + 8m?aiQ
|
G (DY
(G(O) '
dmaya; + 6ma?p + 2(1 — 2m)a,f + 8m?a3
+ 32m?ay,aiQ
)
G'(DY".
<G(§)) '

6maga,f + 2ma?p? + 4maiy + 2(1
—2m)a;p? + 2(1 — 2m)aly
—4m?a?Qw + k?) + 24m?aya?
+ 48m2aiaiQ

)3
(G (f)) .
G/ -
2maga,f? + dmaga,y + 2maify + 2(1
— 2m)aiyp
— 8m?aya; 2w + k?)
+ 24m?aia, + 32mlada,
I} 4
G (DY,
(MO)'

2maga,fy + (1 — 2m)a?y?
—4m2a¢Qw + k?) + 8m2a
+ 8m2a;Q



solving the above system of equations, we get:

_1(1+2m)  1(By-20(1 +2m))
=" m+1) '8 mQ

B 1<\/—29(1 + 2m)>

173 ma
1 1 (1+2m)
— _ _ 2 I
©= z{k +ZQ(m+1)2}
1 m2(1 + 2m)
_ 1) p2
y‘4{ﬁ +29(1+m)2}

p and k are arbitrary constant.

By using above values of ( @y, a1, w,y ) in Eq.(4.4),
solution of Eq.(4.3) takes form:

1(1+2m) , 1(BJ/-201+2m)) (B . G' ()
2@ =~ 4 G+5e)

4 (m+1) — 4 mQ 2 GO
(4.5)

by putting the general solution of 2nd order linear
ODE in Eq.(4.5) we get the following three type of
traveling wave solutions.

4.1 Family 1: Trigonometric function solutions

if we have A = B% — 4y > 0 we get the solution in
hyperbolic form,

2

By using above values of ( ag, @y, w,¥ ), Eq.(4.5),
Eq.(4.1) Eq.(3.2) we get
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JF7— 4y [ Asinh ((M/z){) + Aycosh ((M/z)()
A, cosh ((M/z){) + Aysinh ((M/z)()

_|_10a+2m —
)l/(x, = l 8 Q(1+m) {2 +

1(1 + 2m)
T 80(1+m)

Ay sinh ( }7_2%2((114_—'—"21)72) (()) + A, cosh ( 7_27?12((11++12)72) (())

/—mz(l + 2m) . /—mz(l + 2m)
Ay cosh( 200 Fm)? (()) + 4, smh( 200 +m)?
x ei[—kx—(k2/2+(1—2m)/zn(m+1)2t+9)]

¢ = (x+ kt)

Ay, A, are arbitrary constants. for more results set

A; # 0 and A, = 0 we get solution of the form:
Y(x,t)

| 1ta+2m)
| sa+m)

1/2m

(x + kt)

= tanh m2(1+ 2m)
an 20(1 + m)?

x etl=kx=(k?/2+(1-2m)/2Q(m+1)?t+6)]

Now A1 = O,AZ *0

1/2m

2(1+2m)
coth< /— ﬁ)} (x + kt) N

eil-ke=(k?/2+(1-2m)/20(m+1)*t+6)] 4 9 Family o

Trigonometric function solutions
If we have A = B2 — 4y < 0 we get the solution in

hyperbolic form:

q1/2m



e (S===n)

2
() | (L2 )

/A1 sinh

2

/N

()

N— —

2

LIJ(ix, t)

_ 1(1+2m)L
T 8a@+m|

I
—A;sin (

20(1 + m)?

_ 1
m2(1 + 2m) (f)>|

|
+ 1
Aycos ( ’%(C)) + Aysin < /W (€)>

—m2(1 + 2m)
201 + m)? (O> + Azcos <
x ei[—kx—(kz/z+(1—2m)/29.(m+1)2t+9)]

Where ¢ = (x + kt) and Ay,A, are arbitrary
constants. For more results set A; # 0 and A4, =

0 we get solution of the form:

Y(x,t) =

1(1+2m) )
T 80(1+m)

= itanh m2(1 4 2m)
+ itan m (x + kt)

% ei[—kx—(kz/z+(1—2m)/29(m+1)2t+9)]

A1, A, are arbitrary constants.
Y(x,t)

| 1(1+2m)
| sa+m)

Ficotn| |2 g
eoth| oG @+mye |(* RO

x eil—kx—(k?/2+(1-2m)/2Q(m+1)*t+6)]

1/2m
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4.3 Family 3: Rational function solutions

If we have A = 2 — 4y = 0 we get the solution:

G' B ( A ) B
G) \A +A4,0) 2
win g | (Y20 2m) 4, Hem
(6) =+ 4mQ A, + Ay (x + ko)
1 % ei[—kx—(k2/2+(1—2m)/zn(m+1)2r+e)]
Tzm

Che dynamical behavior of this solution has been

$hown in Figures (1-4) for the following values
appeared in Table 1.



Figure 2: Dynamical solution of ¥(x,t) at Q = -1,n=1/2,C, = —1.5,C, = 5.
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Figure 4: Dynamical solution of ¥(x,t) at Q = —-1,n=1/2, €, = 10, C, = 5.
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Q C, C, n
-1 1.5 -5 1
2
-1 -1.5 5 1
2
-1 1.5 0.1 1
2
-1 -10 5 1
2

Conclusions systems. The newly obtained analytical solutions

In this study, we successfully applied the basic
(G'/G) method, which relies on second-order
linear differential equations, to derive a series of
new and exact soliton solutions for the Davydov
model in oa-helix Our
demonstrate that the (G'/G) method is a powerful
and reliable tool for solving complex nonlinear

proteins. findings

Schrodinger equations, which are fundamental to

understanding energy transfer in biological

Supplementary Materials: Not Applicable.

provide a comprehensive theoretical framework
and reveal several previously unobserved wave
behaviors, offering valuable insights that can be
used for both numerical and theoretical studies.
Building on this work, future research could apply
this method to investigate the eftects of external
forces on the Davydov soliton. The derived
solutions can also be used to explore how quantum
which could

advance our understanding of quantum biology.

effects stabilize these solitons,
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